15 research outputs found

    Reliability of Tibialis Anterior Muscle Voluntary Activation Using the Interpolated Twitch Technique and the Central Activation Ratio in People with Stroke

    Get PDF
    Voluntary activation (VA) is measured by applying supramaximal electrical stimulation to a muscle during a maximal voluntary contraction (MVC). The amplitude of the evoked muscle twitch is used to determine any VA deficit, and indicates incomplete central neural drive to the motor units. People with stroke experience VA deficits and greater levels of central fatigue, which is the decrease in VA that occurs following exercise. This study investigated the between-session reliability of VA and central fatigue of the tibialis anterior muscle (TA) in people with chronic stroke (n = 12), using the interpolated twitch technique (ITT), adjusted-ITT, and central activation ratio (CAR) methods. On two separate sessions, supramaximal electrical stimulation was applied to the TA when it was at rest and maximally activated, at the start and end of a 30-s isometric dorsiflexor MVC. The most reliable measures of VA were obtained using the CAR calculation on transformed data, which produced an ICC of 0.92, and a lower bound confidence interval in the good range (95% CI 0.77 to 0.98). Reliability was lower for the CAR calculation on non-transformed data (ICC 0.82, 95% CI 0.63 to 0.91) and the ITT and adjusted-ITT calculations on transformed data (ICCs 0.82, 95% CIs 0.51 to 0.94), which had lower bound confidence intervals in the moderate range. The two ITT calculations on non-transformed data demonstrated the poorest reliability (ICCs 0.62, 95% CI 0.25 to 0.74). Central fatigue measures demonstrated very poor reliability. Thus, the reliability for VA in people with chronic stroke ranged from good to poor, depending on the calculation method and statistical analysis method, whereas the reliability for central fatigue was very poor

    Characteristics of the Contingent Negative Variation during Lower Limb Functional Movement with an Audio-Visual Cue

    Get PDF
    Background: The contingent negative variation (CNV) is a negative shift in electroencephalography (EEG) related to the planning and execution of an externally cued movement task. The CNV has the potential to be applied within stroke rehabilitation; however, there is insufficient knowledge about the CNV characteristics under movement conditions relevant to rehabilitation. This study explores the CNV characteristics during a functional movement task (versus a simple movement task) and when using an audio-visual cue that has been previously evaluated for its usability in stroke rehabilitation (versus a simple visual cue). Methods: Thirty healthy participants performed five randomized movement tasks: simple ankle dorsiflexion with a visual cue (1), audio-visual cue (2), and auditory-only cue (3), and sit-to-stand with a visual (4) and audio-visual cue (5). Fifty repetitions of each movement were performed while continuous EEG was recorded. The band-passed and Laplacian-filtered (Cz) EEG was averaged for each condition and the peak negativity (PN) latency and amplitude were identified. Results: PN latency was significantly later during sit-to-stand with the audio-visual cue versus the visual cue (p = 0.027). PN amplitude was significantly larger during sit-to-stand versus ankle dorsiflexion, with both visual and audio-visual cues (p < 0.0001). Conclusion: The CNV changes under more complex movement conditions. Assumptions about the MRCP from simple laboratory recordings should not be generalized to the rehabilitation setting

    An examination of action capabilities and movement time during a soccer anticipation task

    Get PDF
    This study examined the anticipation responses of twenty skilled youth players who were assigned to either a change of direction (CODG) or small-sided games group (SSGG). Action capabilities were assessed via a countermovement vertical jump (CMVJ), 20 m sprint, 5 m acceleration and arrowhead change of direction (COD) test. Anticipation was measured via a soccer-specific anticipation test (SSAT), which required participants to anticipate the actions of an opposing player and intercept a pass. Pre- and post-intervention testing procedures were identical for both groups. Following training there was an overall improvement in CMVJ performance (p < 0.05, r = 0.52) for both training groups and this improvement was correlated with movement initiation in the SSAT (r = 0.61, p < 0.05). The novel findings of this study highlight that different training modes can potentially have a positive impact on anticipation performance. Further investigation focussing on an examination of the relationship between training, anticipation, and action capabilities in sport is warranted for the development of research and applied perspectives in expertise

    Validity and Reliability of a Smartphone App for Gait and Balance Assessment

    Get PDF
    Advances in technology provide an opportunity to enhance the accuracy of gait and balance assessment, improving the diagnosis and rehabilitation processes for people with acute or chronic health conditions. This study investigated the validity and reliability of a smartphone-based application to measure postural stability and spatiotemporal aspects of gait during four static balance and two gait tasks. Thirty healthy participants (aged 20–69 years) performed the following tasks: (1) standing on a firm surface with eyes opened, (2) standing on a firm surface with eyes closed, (3) standing on a compliant surface with eyes open, (4) standing on a compliant surface with eyes closed, (5) walking in a straight line, and (6) walking in a straight line while turning their head from side to side. During these tasks, the app quantified the participants’ postural stability and spatiotemporal gait parameters. The concurrent validity of the smartphone app with respect to a 3D motion capture system was evaluated using partial Pearson’s correlations (r(p)) and limits of the agreement (LoA%). The within-session test–retest reliability over three repeated measures was assessed with the intraclass correlation coefficient (ICC) and the standard error of measurement (SEM). One-way repeated measures analyses of variance (ANOVAs) were used to evaluate responsiveness to differences across tasks and repetitions. Periodicity index, step length, step time, and walking speed during the gait tasks and postural stability outcomes during the static tasks showed moderate-to-excellent validity (0.55 ≤ r(p) ≤ 0.98; 3% ≤ LoA% ≤ 12%) and reliability scores (0.52 ≤ ICC ≤ 0.92; 1% ≤ SEM% ≤ 6%) when the repetition effect was removed. Conversely, step variability and asymmetry parameters during both gait tasks generally showed poor validity and reliability except step length asymmetry, which showed moderate reliability (0.53 ≤ ICC ≤ 0.62) in both tasks when the repetition effect was removed. Postural stability and spatiotemporal gait parameters were found responsive (p < 0.05) to differences across tasks and test repetitions. Along with sound clinical judgement, the app can potentially be used in clinical practice to detect gait and balance impairments and track the effectiveness of rehabilitation programs. Further evaluation and refinement of the app in people with significant gait and balance deficits is needed

    Electroencephalographic recording of the movement-related cortical potential in ecologically-valid movements:A scoping review

    Get PDF
    The movement-related cortical potential (MRCP) is a brain signal that can be recorded using surface electroencephalography (EEG) and represents the cortical processes involved in movement preparation. The MRCP has been widely researched in simple, single-joint movements, however, these movements often lack ecological validity. Ecological validity refers to the generalizability of the findings to real-world situations, such as neurological rehabilitation. This scoping review aimed to synthesize the research evidence investigating the MRCP in ecologically valid movement tasks. A search of six electronic databases identified 102 studies that investigated the MRCP during multi-joint movements; 59 of these studies investigated ecologically valid movement tasks and were included in the review. The included studies investigated 15 different movement tasks that were applicable to everyday situations, but these were largely carried out in healthy populations. The synthesized findings suggest that the recording and analysis of MRCP signals is possible in ecologically valid movements, however the characteristics of the signal appear to vary across different movement tasks (i.e., those with greater complexity, increased cognitive load, or a secondary motor task) and different populations (i.e., expert performers, people with Parkinson’s Disease, and older adults). The scarcity of research in clinical populations highlights the need for further research in people with neurological and age-related conditions to progress our understanding of the MRCPs characteristics and to determine its potential as a measure of neurological recovery and intervention efficacy. MRCP-based neuromodulatory interventions applied during ecologically valid movements were only represented in one study in this review as these have been largely delivered during simple joint movements. No studies were identified that used ecologically valid movements to control BCI-driven external devices; this may reflect the technical challenges associated with accurately classifying functional movements from MRCPs. Future research investigating MRCP-based interventions should use movement tasks that are functionally relevant to everyday situations. This will facilitate the application of this knowledge into the rehabilitation setting

    Associative cued asynchronous BCI induces cortical plasticity in stroke patients

    Get PDF
    OBJECTIVE: We propose a novel cue‐based asynchronous brain–computer interface(BCI) for neuromodulation via the pairing of endogenous motor cortical activity with the activation of somatosensory pathways. METHODS: The proposed BCI detects the intention to move from single‐trial EEG signals in real time, but, contrary to classic asynchronous‐BCI systems, the detection occurs only during time intervals when the patient is cued to move. This cue‐based asynchronous‐BCI was compared with two traditional BCI modes (asynchronous‐BCI and offline synchronous‐BCI) and a control intervention in chronic stroke patients. The patients performed ankle dorsiflexion movements of the paretic limb in each intervention while their brain signals were recorded. BCI interventions decoded the movement attempt and activated afferent pathways via electrical stimulation. Corticomotor excitability was assessed using motor‐evoked potentials in the tibialis‐anterior muscle induced by transcranial magnetic stimulation before, immediately after, and 30 min after the intervention. RESULTS: The proposed cue‐based asynchronous‐BCI had significantly fewer false positives/min and false positives/true positives (%) as compared to the previously developed asynchronous‐BCI. Linear‐mixed‐models showed that motor‐evoked potential amplitudes increased following all BCI modes immediately after the intervention compared to the control condition (p <0.05). The proposed cue‐based asynchronous‐BCI resulted in the largest relative increase in peak‐to‐peak motor‐evoked potential amplitudes(141% ± 33%) among all interventions and sustained it for 30 min(111% ± 33%). INTERPRETATION: These findings prove the high performance of a newly proposed cue‐based asynchronous‐BCI intervention. In this paradigm, individuals receive precise instructions (cue) to promote engagement, while the timing of brain activity is accurately detected to establish a precise association with the delivery of sensory input for plasticity induction

    Exploring the solid state and solution structural chemistry of the utility amide potassium hexamethyldisilazide (KHMDS)

    Get PDF
    The structural chemistry of eleven donor complexes of the important Brønsted base potassium 1,1,1,3,3,3-hexamethyldisilazide (KHMDS) has been studied. Depending on the donor, each complex adopted one of four general structural motifs. Specifically, in this study the donors employed were toluene (to give polymeric 1 and dimeric 2), THF (dimeric 3), N,N,N',N'-tetramethylethylenediamine (TMEDA) (dimeric 4), (R,R)-N,N,N',N'-tetramethyl-1,2-diaminocyclohexane [(R,R)-TMCDA] (dimeric 5), 12-crown-4 (dimeric 6), N,N,N',N'-tetramethyldiaminoethyl ether (TMDAE) (tetranuclear dimeric 8 and monomeric 10), N,N,N',N',N''-pentamethyldiethylentriamine (PMDETA) (tetranuclear dimeric 7), tris[2-dimethyl(amino)ethyl]amine (Me6TREN) (tetranuclear dimeric 9) and tris{2-(2-methoxyethoxy)ethyl}amine (TMEEA) (monomeric 11). The complexes were also studied in solution by 1H and 13C NMR spectroscopy as well as DOSY NMR spectroscopy
    corecore